polymer solar cell
Polymer solar cells are a type of flexible solar cell. They can come in many forms including: organic solar cell (also called plastic solar cell), or organic chemistry photovoltaic cell that produce electricity from sunlight using polymers. There are also other types of more stable thin-film semiconductors that can be deposited on different types of polymers to create solar cells. This technology is relatively new, being actively researched by universities, national laboratories and several companies around the world.
Currently, commercial solar cells are made from a refined, highly purified silicon crystal, similar to the material used in the manufacture of integrated circuits and computer chips (wafer silicon). The high cost of these silicon solar cells, and their complex production process has generated interest in developing alternative photovoltaic technologies.
Compared to silicon-based devices, polymer solar cells are lightweight (which is important for small autonomous sensors), potentially disposable and inexpensive to fabricate (sometimes using printed electronics), flexible, and customizable on the molecular level, and they have lower potential for negative environmental impact. An example device is shown in Fig. 1. The disadvantages of polymer solar cells are also serious: they offer about 1/3 of the efficiency of hard materials, and they are relatively unstable toward photochemical degradation. For these reasons, despite continuing advances in semiconducting polymers, the vast majority of solar cells rely on inorganic materials.
The following discussion is based primarily on Mayer et al.'s review, cited below. Organic photovoltaics are made of electron donor and electron acceptor materials rather than semiconductor p-n junctions. The molecules forming the electron donor region of organic PV cells, where exciton electron-hole pairs are generated, are generally conjugated polymers possessing delocalized π electrons that result from carbon p orbital hybridization. These π electrons can be excited by light in or near the visible part of the spectrum from the molecule's highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), denoted by a π -π* transition. The energy bandgap between these orbitals determines which wavelength of light can be absorbed.
structure polymer solar cell
Unlike in an inorganic crystalline PV cell material, with its band structure and delocalized electrons, excitons in organic photovoltaics are strongly bound with an energy between 0.1 and 1.4 eV. This strong binding occurs because electronic wavefunctions in organic molecules are more localized, and electrostatic attraction can thus keep the electron and hole together as an exciton. The electron and hole can be dissociated by providing an interface across which the chemical potential of electrons decreases. The material that absorbs the photon is the donor, and the material acquiring the electron is called the acceptor. In Fig. 2, the polymer chain is the donor and the fullerene is the acceptor. After dissociation has taken place, the electron and hole may still be joined as a geminate pair and an electric field is then required to separate them.
After exciton dissociation, the electron and hole must be collected at contacts. However, charge carrier mobility now begins to play a major role: if mobility is not sufficiently high, the carriers will not reach the contacts, and will instead recombine at trap sites or remain in the device as undesirable space charges that oppose the drift of new carriers. The latter problem can occur if electron and hole mobilities are highly imbalanced, such that one species is much more mobile than the other. In that case, space-charge limited photocurrent (SCLP) hampers device performance.
Tidak ada komentar:
Posting Komentar