Kamis, 12 Mei 2011

Waste to Energy

Gasification
Waste-to-energy (WtE) or energy-from-waste (EfW) is the process of creating energy in the form of electricity or heat from the incineration of waste source. WtE is a form of energy recovery. Most WtE processes produce electricity directly through combustion, or produce a combustible fuel commodity, such as methane, methanol, ethanol or synthetic fuels

During the 2001-2007 period, the WTE capacity increased by about four million metric tons per annum. Japan and China built several plants that were based on direct smelting or on fluid bed combustion of solid waste. In China there are about 50 WTE plants. Japan is the largest user in thermal treatment of MSW in the world with 40 million tons. Some of the newest plants use stoker technology and others use the advanced oxygen enrichment technology. There are also over one hundred thermal treatment plants using relatively novel processes such as direct smelting, the Ebara fluidization process and the Thermo- select -JFE gasification and melting technology process. In Patras, Greece, a Greek company just finished testing a system that shows potential. It generates 25kwatts of electricity and 25kwatts of heat from waste water. In India its first energy bio-science center was developed to reduce the country’s green house gases and its dependency on fossil fuel.
Pyrolysis
Biofuel Energy Corporation of Denver, CO, opened two new biofuel plants in Wood River, NE, and Fairmont, MN, in July 2008. These plants use distillation to make ethanol for use in motor vehicles and other engines. Both plants are currently reported to be working at over 90% capacity. Fulcrum BioEnergy incorporated located in Pleasanton, CA, is currently building a WTE plant near Reno, NV. The plant is scheduled to open in early 2010 under the name of Sierra BioFuels plant. BioEnergy incorporated predicts that the plant will produce approximately 10.5 million gallons per year of ethanol from nearly 90,000 tons per year of MSW.(Biofuels News)

Waste to energy technology includes fermentation, which can take biomass and create ethanol, using waste cellulosic or organic material. In the fermentation process, the sugar in the waste is changed to carbon dioxide and alcohol, in the same general process that is used to make wine. Normally fermentation occurs with no air present. Esterification can also be done using waste to energy technologies, and the result of this process is biodiesel. The cost effectiveness of esterification will depend on the feedstock being used, and all the other relevant factors such as transportation distance, amount of oil present in the feedstock, and others. Gasification and pyrolysis by now can reach thermal conversion efficiencies from of up to 75%, however a complete combustion is superior in terms of fuel conversion efficiency. Some pyrolysis processes need an outside heat source which may be supplied by the gasification process, making the combined process self sustaining.

Tidak ada komentar:

Posting Komentar

Random Post