High Voltage Direct Current Object
A high-voltage, direct current (HVDC) electric power transmission system uses direct current for the bulk transmission of electrical power, in contrast with the more common alternating current systems. For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses.
For underwater power cables, HVDC avoids the heavy currents required by the cable capacitance. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be warranted, due to other benefits of direct current links. HVDC allows power transmission between unsynchronized AC distribution systems, and can increase system stability by preventing cascading failures from propagating from one part of a wider power transmission grid to another.
High Voltage Direct Current System
The advantage of HVDC is the ability to transmit large amounts of power over long distances with lower capital costs and with lower losses than AC. Depending on voltage level and construction details, losses are quoted as about 3% per 1,000 km. High-voltage direct current transmission allows efficient use of energy sources, remote from load centers.
HVDC can carry more power per conductor because, for a given power rating, the constant voltage in a DC line is the same as the peak voltage in an AC line. The power delivered in an AC system is defined by the root mean square (RMS) of an AC voltage, but RMS is only about 71% of the peak voltage. The peak voltage of AC determines the actual insulation thickness and conductor spacing. Because DC operates at a constant maximum voltage, this allows existing transmission line corridors with equally sized conductors and insulation to carry more power into an area of high power consumption than AC, which can lower costs.
Because HVDC allows power transmission between unsynchronized AC distribution systems, it can help increase system stability, by preventing cascading failures from propagating from one part of a wider power transmission grid to another. Changes in load that would cause portions of an AC network to become unsynchronized and separate would not similarly affect a DC link, and the power flow through the DC link would tend to stabilize the AC network. The magnitude and direction of power flow through a DC link can be directly commanded, and changed as needed to support the AC networks at either end of the DC link. This has caused many power system operators to contemplate wider use of HVDC technology for its stability benefits alone.
Tidak ada komentar:
Posting Komentar