Plan Anaerobic Digestion
Anaerobic digestion is a series of processes in which microorganisms break down biodegradable material in the absence of oxygen. It is used for industrial or domestic purposes to manage waste and/or to release energy.
Much of the fermentation used industrially to produce food and drink products, as well as home fermentation, uses anaerobic digestion. Silage is produced by anaerobic digestion.
The digestion process begins with bacterial hydrolysis of the input materials to break down insoluble organic polymers, such as carbohydrates, and make them available for other bacteria. Acidogenic bacteria then convert the sugars and amino acids into carbon dioxide, hydrogen, ammonia, and organic acids.
Acetogenic bacteria then convert these resulting organic acids into acetic acid, along with additional ammonia, hydrogen, and carbon dioxide. Finally, methanogens convert these products to methane and carbon dioxide. The methanogenic archaea populations play an indispensable role in anaerobic wastewater treatments.
Many microorganisms are involved in the process of anaerobic digestion, including acetic acid-forming bacteria (acetogens) and methane-forming archaea (methanogens). These organisms feed upon the initial feedstock, which undergoes a number of different processes, converting it to intermediate molecules, including sugars, hydrogen, and acetic acid, before finally being converted to biogas.
Work Anaerobic Digestion
As with aerobic systems, the bacteria, the growing and reproducing microorganisms within anaerobic systems, require a source of elemental oxygen to survive, but in anaerobic systems, there is an absence of gaseous oxygen. Gaseous oxygen is prevented from entering the system through physical containment in sealed tanks. Anaerobes access oxygen from sources other than the surrounding air, which can be the organic material itself or may be supplied by inorganic oxides from within the input material.
When the oxygen source in an anaerobic system is derived from the organic material itself, the 'intermediate' end products are primarily alcohols, aldehydes, and organic acids, plus carbon dioxide. In the presence of specialised methanogens, the intermediates are converted to the 'final' end products of methane, carbon dioxide, and trace levels of hydrogen sulfide. In an anaerobic system, the majority of the chemical energy contained within the starting material is released by methanogenic bacteria as methane
Tidak ada komentar:
Posting Komentar